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Brief Introduction
● Anton Bezuglov, Ph.D. in Computer Science and Engineering, University of 

South Carolina, Columbia, 2006
● Assoc. Professor of Computer Science at Benedict College
● Areas of interests: Machine learning, neural networks, algorithms, etc
● Summer Research Team 2016, sponsored by DHS
● Artificial Neural Networks for Storm Surge Prediction
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Brief Introduction, contd.
● Motivation: accurate method for storm surge prediction;
● Parametric vs. Nonparametric approaches (Bishop, 2006)
● Parametric models are computationally expensive;
● Nonparametric models are cheap, but need training;
● Problem: need large datasets for training;
● Synthetic hurricanes;
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Dataset
● 324 synthetic hurricanes;
● 193 samples per hurricane
● 6 inputs, 10 outputs
● Inputs: hurricane parameters
● Outputs: water levels at 10 locations

inputs outputs
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Assumption
● Based on previous studies;
● Suppose input -- x(t), output -- y(t), t - time;
● x(t) contains all information to make predictions
● y(t) depends on x(t) only
● y(t) does not depend on x(t-1), y(t-1), etc.
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Regression with a FF ANN
● Problem: find a function f(.), so that: 
● yp = f(x), yp-- storm surge predictions
● f(.) -- can be a Feed Forward Artificial Neural Network (FF ANN);
● Train FF ANN to minimize the error between y and yp
● Use synthetic storms to train;
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FF ANN’s
● One hidden layer ANN, two layer model;
● Information travels from left to right;
● Nodes are variables (inputs, outputs, and hidden);
● Edges -- independent parameters;
● Nonlinear function;
● Complexity determined by # of multiplications
● Approx. O(N2), N - # of hidden nodes
● Backpropagation algorithm
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Design Questions
● Architecture?
● Number of hidden layers?
● Size of each layer?
● Choice of nonlinear function?
● Initial weights/biases?
● Learning rate?
● Learning rate decay?
● Algorithm for training?
● Clipping gradients?
● Dealing with overfitting?
● Loss function?
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Design Questions, contd.
● Architecture? -- Two hidden layer multiple outputs
● Number of hidden layers? -- two hidden layers
● Size of each layer? -- 16-64 neurons, second layer larger
● Choice of nonlinear function? -- TanH 
● Initial weights/biases? -- N(0, 0.01)
● Learning rate? -- 0.001 -- 0.01
● Learning rate decay? -- 0.5
● Algorithm for training? -- ADAM optimization algorithm
● Clipping gradients? -- yes, 1.25-1.5 norm
● Dealing with overfitting? -- validation set, 15%
● Loss function-- Mean Squared Error (MSE)
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Design Questions, contd.
● Stochastic optimization

○ Use portions of the training dataset: batches
○ Training dataset: 228 storms, batches: 19, 57, 114
○ Or Training dataset: 225 storms, batches: 3, 5, 9, 15, 45, 225

● Inputs normalization
○ Inputs vary by 2-3 orders of magnitude
○ Too long to converge
○ Calculate moments for each input param in the training dataset
○ Normalize inputs
○ Store the moments along with the model
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Design Summary
● Split dataset into training (70%), validation (15%), and testing (15%);
● Two hidden layer FF ANN (N1 < N2, less inputs than outputs);
● Train to minimize MSE;
● Check for overfitting on the validation dataset;
● Evaluate performance on the testing dataset;
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Implementation: TensorFlow

● TensorFlow -- Open Source Library for Machine Intelligence;
● Algorithms are graphs, nodes -- operations, edges -- tensors
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Implementation: Training and Evaluation
● Graph variables can be evaluated/called
● To train -- call optimizer variable
● To evaluate -- call loss variable
● etc.
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Implementation: Dealing with Gradients
Graph variables to evaluate

Calculate 
gradients

Clip

Apply gradients

Evaluate 
train_op to 

perform a single 
train iteration
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Implementation: Multiple GPU’s
● Each GPU has same graph but individual 

inputs/outputs;
● Calculate gradients on each GPU;
● Average gradient;
● Apply gradients;
● Update graphs;
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Implementation: Restore ANN
● Save model: weights, biases, and input 

moments;
● Train/Run modes;
● Train -- open file, train ANN, save ANN;
● Run -- open file, open model, run, save outputs;
● Train, approx. 1-20 minutes;
● Run, 0.11 sec (324x193 samples);
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FF ANN: Performance
● Two hidden layer FF ANN (32,64)
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FF ANN: Performance
“Easy”

Underpredictions

ADCIRC
FF ANN
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FF ANN: Summary
● Multi-output ANN: one model for several locations
● MSE’s are approx. 0.006 m^2
● CC’s are 0.95
● ANN has no error before and after the storm surge;
● Larger errors at storm surge;
● Low MSE’s b/c of zeros;

Does y(t) depend on x(t) and something else?

Does x(t) miss information?
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