
Artificial Neural Networks for 
Storm Surge Predictions in NC

DHS Summer Research Team

1



Outline
● Introduction;
● Feedforward Artificial Neural Network;
● Design questions;
● Implementation;
● Improvements;
● Conclusions;

2



Brief Introduction
● Anton Bezuglov, Ph.D. in Computer Science and Engineering, University of 

South Carolina, Columbia, 2006
● Assoc. Professor of Computer Science at Benedict College
● Areas of interests: Machine learning, neural networks, algorithms, etc
● Summer Research Team 2016, sponsored by DHS
● Artificial Neural Networks for Storm Surge Prediction

3



Brief Introduction, contd.
● Motivation: accurate method for storm surge prediction;
● Parametric vs. Nonparametric approaches (Bishop, 2006)
● Parametric models are computationally expensive;
● Nonparametric models are cheap, but need training;
● Problem: need large datasets for training;
● Synthetic hurricanes;

4



Dataset
● 324 synthetic hurricanes;
● 193 samples per hurricane
● 6 inputs, 10 outputs
● Inputs: hurricane parameters
● Outputs: water levels at 10 locations

inputs outputs

5



Assumption
● Based on previous studies;
● Suppose input -- x(t), output -- y(t), t - time;
● x(t) contains all information to make predictions
● y(t) depends on x(t) only
● y(t) does not depend on x(t-1), y(t-1), etc.

6



Outline
● Introduction;
● Feedforward Artificial Neural Network;
● Design questions;
● Implementation;
● Improvements;
● Conclusions;

7



Regression with a FF ANN
● Problem: find a function f(.), so that: 
● yp = f(x), yp-- storm surge predictions
● f(.) -- can be a Feed Forward Artificial Neural Network (FF ANN);
● Train FF ANN to minimize the error between y and yp
● Use synthetic storms to train;

8



FF ANN’s
● One hidden layer ANN, two layer model;
● Information travels from left to right;
● Nodes are variables (inputs, outputs, and hidden);
● Edges -- independent parameters;
● Nonlinear function;
● Complexity determined by # of multiplications
● Approx. O(N2), N - # of hidden nodes
● Backpropagation algorithm

9



Design Questions
● Architecture?
● Number of hidden layers?
● Size of each layer?
● Choice of nonlinear function?
● Initial weights/biases?
● Learning rate?
● Learning rate decay?
● Algorithm for training?
● Clipping gradients?
● Dealing with overfitting?
● Loss function?

10



Design Questions, contd.
● Architecture? -- Two hidden layer multiple outputs
● Number of hidden layers? -- two hidden layers
● Size of each layer? -- 16-64 neurons, second layer larger
● Choice of nonlinear function? -- TanH 
● Initial weights/biases? -- N(0, 0.01)
● Learning rate? -- 0.001 -- 0.01
● Learning rate decay? -- 0.5
● Algorithm for training? -- ADAM optimization algorithm
● Clipping gradients? -- yes, 1.25-1.5 norm
● Dealing with overfitting? -- validation set, 15%
● Loss function-- Mean Squared Error (MSE)

11



Design Questions, contd.
● Stochastic optimization

○ Use portions of the training dataset: batches
○ Training dataset: 228 storms, batches: 19, 57, 114
○ Or Training dataset: 225 storms, batches: 3, 5, 9, 15, 45, 225

● Inputs normalization
○ Inputs vary by 2-3 orders of magnitude
○ Too long to converge
○ Calculate moments for each input param in the training dataset
○ Normalize inputs
○ Store the moments along with the model

12



Design Summary
● Split dataset into training (70%), validation (15%), and testing (15%);
● Two hidden layer FF ANN (N1 < N2, less inputs than outputs);
● Train to minimize MSE;
● Check for overfitting on the validation dataset;
● Evaluate performance on the testing dataset;

13



Outline
● Introduction;
● Feedforward Artificial Neural Network;
● Design questions;
● Implementation;
● Improvements;
● Conclusions;

14



Implementation: TensorFlow

● TensorFlow -- Open Source Library for Machine Intelligence;
● Algorithms are graphs, nodes -- operations, edges -- tensors

x

Wh

bh

b

MSE

W

tanh

y

loss 15



Implementation: Training and Evaluation
● Graph variables can be evaluated/called
● To train -- call optimizer variable
● To evaluate -- call loss variable
● etc.

x

Wh

bh

b

MSE

W

tanh

y

loss

List of graph 
variables to 

evaluate
Inputs for 

placeholders

16



Implementation: Dealing with Gradients
Graph variables to evaluate

Calculate 
gradients

Clip

Apply gradients

Evaluate 
train_op to 

perform a single 
train iteration

17



Implementation: Multiple GPU’s
● Each GPU has same graph but individual 

inputs/outputs;
● Calculate gradients on each GPU;
● Average gradient;
● Apply gradients;
● Update graphs;

18



Implementation: Restore ANN
● Save model: weights, biases, and input 

moments;
● Train/Run modes;
● Train -- open file, train ANN, save ANN;
● Run -- open file, open model, run, save outputs;
● Train, approx. 1-20 minutes;
● Run, 0.11 sec (324x193 samples);

19



FF ANN: Performance
● Two hidden layer FF ANN (32,64)

“Easy”

“Difficult”

Before and after 
landfall Landfall only

20



FF ANN: Performance
“Easy”

Underpredictions

ADCIRC
FF ANN

21



FF ANN: Summary
● Multi-output ANN: one model for several locations
● MSE’s are approx. 0.006 m^2
● CC’s are 0.95
● ANN has no error before and after the storm surge;
● Larger errors at storm surge;
● Low MSE’s b/c of zeros;

Does y(t) depend on x(t) and something else?

Does x(t) miss information?

22



Acknowledgements
● Many thanks to Brian Blanton, Ph.D.
● RENCI, CRC
● DHS SRT Program

This research was performed under an appointment to the U.S. Department of Homeland Security (DHS) Science & 
Technology (S&T) Directorate Office of University Programs Summer Research Team Program for Minority Serving 
Institutions, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement 
between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by ORAU under DOE contract number DE-
AC05-06OR23100. All opinions expressed in this presentation are the author’s and do not necessarily reflect the policies 
and views of DHS, DOE or ORAU/ORISE.

23


