A U.S. Department of Homeland Security Center of Excellence

Improving the Efficiency of Wave and Surge Models via Adaptive Mesh Resolution

JC Dietrich¹, CN Dawson², A Thomas¹, A Behnia²

¹ Dep't of Civil, Construction, and Environmental Engineering, NC State Univ ² Institute for Computational Engineering and Sciences, Univ Texas at Austin

DHS CRCoE Annual Meeting, Chapel Hill NC, 2-3 March 2016

CRC 1st Annual Meeting March 2-3, 2016

A U.S. Department of Homeland Security Center of Excellence

Description

- Predictive models are costly Hundreds or even thousands of CPUs, hours of wall-clock time
- Why spend resources on regions that start dry and are never flooded by the storm?

Goal and Objectives

- Improve efficiencies of the ADCIRC+SWAN system
 - Optimize the computational workload
 - Adaptively modify the mesh resolution
 - Do so in a way that improves parallel efficiency

Relevance

- DHS mission to ensure resilience to disasters, as articulated in its Strategic Plan and Quadrennial Review
 - Goal 5.1 (Obj. 5.1.1 5.1.2) Reduce vulnerability and mitigate risks associated with natural hazards
 - Goal 5.3 (Obj. 5.3.1) Provide timely and accurate information during a storm event

TX2008:

- Wet vertices ...
 - Initially 51%
 - During Ike 64%
- Fully wet subdomains ...
 - Initially 18%
 - During Ike 32%

A U.S. Department of Homeland Security Center of Excellence

Technical Approach

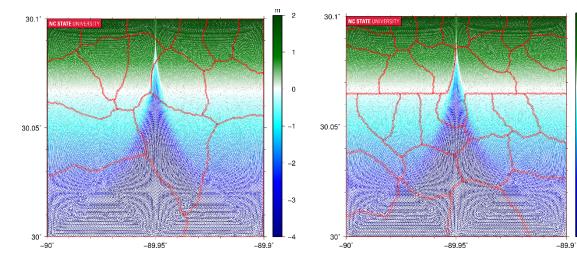
This project will require advancements in two areas:

- 1. Implementing an *adaptive, multi-resolution approach* to increase resolution during a simulation
- 2. Optimizing the use of computational resources through *dynamic load balancing*

Adaptive, multi-resolution approach

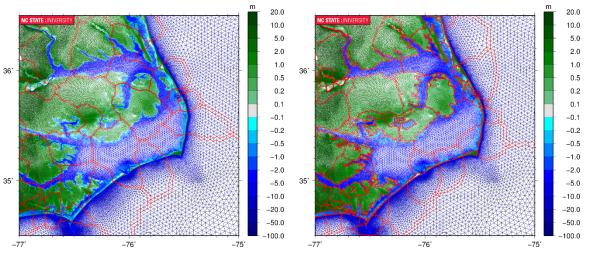
- Start with relatively coarse resolution that may not include extensive coastal detail
- As the storm approaches a coastline, extract regions from a fine-resolution mesh within our database
- The higher-resolution floodplains will be stitched into the coarse-resolution, open-water domain
- Results will be mapped onto the new portions of the mesh, and then the simulation will continue

Dynamic load balancing


- Reallocate computational resources to improve parallel efficiency
- Each core will be responsible for developing its own input information
- Initial attempts (with Results shown on the next slide):
 - Optimize the initial domain decomposition to assign wet regions to every core
 - Decomposition is still static for now

CRC 1st Annual Meeting March 2-3, 2016

A U.S. Department of Homeland Security Center of Excellence


Preliminary Results – Load Balancing

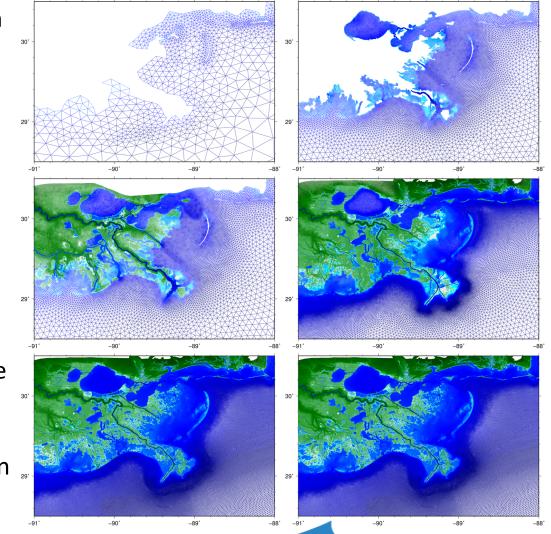
Idealized channel with wetting / drying

Hurricane Irene (2011) on NC9 mesh

+ load balancing

257.2

-21.2


Test	Code Version	Cores	CPU-hr	% Change		Test	Code Version	Cores	CPU-hr	% Change
Static	ADCIRC v52.22	15	0.98			Tides	ADCIRC v52.22	95	400.4	
	+ load balancing		0.40	- 58.7			+ load balancing		313.7	- 21.7
Wet/Dry	ADCIRC v52.22	15	1.13			Irono	ADCIRC v52.22	95	340.8	
	+ load balancing		0.78	- 31.3			+ load balancing		338.7	- 0.6
						Irene	ADCIRC v52.22	47	327.2	
The University of North Carolina at Chanel Hill										

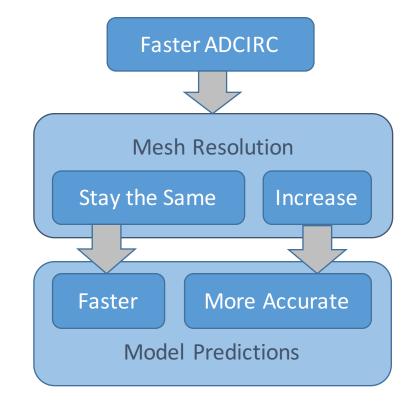
-3

A U.S. Department of Homeland Security Center of Excellence

Preliminary Results – Dynamic, Multi-Resolution Approach

- Begin with a coarse mesh, then switch to a fine mesh, without stopping the simulation
- Mapping between the two meshes is done via the Earth System Modeling Framework (ESMF)
 - Optimized for parallel interpolation between unstructured meshes
 - Different fields are mapped with different methods (bilinear, first order conservative) to preserve the main properties of the fields (e.g. continuity)
- Use of the ESMF package in addition to the *hotstart* feature of ADCIRC allows for an efficient way to continue the simulation on another mesh
- This process can be repeated as many times as needed to adapt to the resolution required during the simulation

CRC 1st Annual Meeting March 2-3, 2016


A U.S. Department of Homeland Security Center of Excellence

End Users

- FEMA
- Texas State Operations Center
- USACE ERDC
- NOAA
- LSU CCT
- Seahorse Coastal Consulting

Transition Activities

- Quarterly videoconferences first scheduled for later in March
 - Share progress reports on research findings
 - Receive feedback and suggestions from end users
 - Enable transfer of technologies
- Integrate technologies into instances of the ADCIRC Surge Guidance System
 - Texas provide guidance to Texas State Operations Center
 - North Carolina integrate within workflow for NCFS

CRC 1st Annual Meeting March 2-3, 2016

A U.S. Department of Homeland Security Center of Excellence

Major Milestones

Research / Transition Milestone	Anticipated Completion Date	
Interpolation of ADCIRC results from coarse to fine meshes	06 / 2016	
Developmental ASGS instance with guidance to Texas State Operations Center		
Dynamic load balancing for a static ADCIRC simulation	12 / 2016	
Testing of dynamic load balancing for other ASGS instances		
Demonstration of dynamic approach with single target mesh	06 / 2017	
Preliminary release of software to transition partners, training with examples		
Dynamic load balancing for an adaptive ADCIRC simulation	12 / 2017	
Integration of project technologies into release version of ADCIRC		

Project Integration

- Summer internship opportunity at Univ Texas at Austin
 - Working with Robert Whalin and the Education Partners to identify an undergraduate student

CRC 1st Annual Meeting March 2-3, 2016